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The occurrence in the literature of numerous, incon-
sistent and limited definitions of a detection limit has
led to a re-examination of the questions of signal
detection and signal extraction in analytical chemistry
and nuclear chemistry. Three limiting levels have
been defined: Lc~the net signal level (instrument re-
sponse) above which an observed signal may be reli-
ably recognized as “detected”; [,-the “true” net
signal level which may be a priori expected to lead to
detection; and [,-the level at which the measurement
precision will be satisfactory for quantitative deter-
mination. Exact defining equations as well as series
of working formulae are presented both for the general
analytical case and for radioactivity. The latter,
assumed to be governed by the Poisson distribution, is
treated in such a manner that accurate limits may be
derived for both short- and long-lived radionuclides
either in the presence or absence of interference.
The principles are illustrated by simple examples of
spectrophotometry and radioactivity, and by a more
complicated example of activation analysis in which a
choice must be made between alternative nuclear
reactions.

N THE coURSE of research dealing with photonuclear reactions
and activation analysis, it became necessary to determine limits
of detection of radiochemical procedures, to select among
alternative procedures, and to optimize given procedures with
respect to certain experimental parameters. Examination of
the analytical and radiochemical literature for an appropriate
definition .of the limit of detection revealed a plethora. of
mathematical expressions and widely-ranging terminology.
One encounters, for example, terms such as lower limit of de-
tection (I), detection sensitivity (2), sensitivity (3), minimum
detectable activity (or mass) (4, 5), and limit of guarantee for
purity (6)y—all used with approximately equivalent meanings.
The nomenclature problem is compounded, however, because
‘other authors make use of the same, or very similar, terms to
refer not to the minimum amount that may be derected, but
rather, to the minimum amount which may be determined with
a given relative standard deviation (such as 10%,). Still other
expressions, such as the “‘detection limit at the 95%, confidence
level” are used without explicit mathematical definition, which
leaves the meaning rather ambiguous. The various mathemati-
cal definitions of detection limit (or its equivalent) range from
one to twenty times the standard deviation of the net signal,
with the standard deviation of the blank sometimes replacing

(1) B. Altshuler and B. Pasternack, Health Physics, 9, 293 (1963).

(2) J. Wing and M. A. Wablgren, ANaL. CHEM., 39, 85 (1967).

(3) R. C. Koch, “Activation Analysis Handbook,” Academic
Press, New York, N. Y., 1960,

(4) D. E. Watt and D. Ramsden, “High Sensitivity Counting
Techniques,” Macmillan Co., New York, N. Y., 1964,

(5 “A Manual of Radioactivity Procedures,” Handbook 80,
National Bureau of Standards, Washington, D. C., 1961.

(6) H. Kaiser, Z. Anal. Chem., 209, 1 (1965).
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Figure 1. “‘Ordered’’ detection limits—literature definitions

The detection limit for a specific radioactivity measurement process
is plotted. in increasing. order, according to. commonly-used alterna-
tive definitions. L¢, Lp, and L, are the critical level, detection
limit, and determination limit as derived in the text

that of the net signal. Some authors apply two-sided confi-
dence intervals, while others use one-sided intervals. In addi-
tion, various “‘nonstatistical’” definitions appear in which the
detection limit is equated to the background, 10%; of the back-
ground, 100 dps (y-radioactivity), or 1000 dpm (a-, 8-,y-radio-
activity). In order to compare some of the more commonly-
used definitions, ‘“‘detection limits” have been calculated for a
nypothetical radioactivity experiment in which a long-lived
v-emitter was counted for 10 min with an efficiency of 109,
using a detector having a background of 20 cpm. The results,
plotted in increasing order in Figure 1, are obviously unsatis-
factory, for they encompass nearly three orders of magnitude!

In what follows, it will be seen that a complete discussion of
the (lower) limits for a measurement process requires the in-
troduction of three specific levels: (1) a ““decision limit” at
which one may decide whether or not the result of an analysis
indicates detection, (2) a “‘detection limit” at which a given
analytical procedure may be relied upon to lead to detection,
and (3) a ““determination limit™ at which a given procedure will
be sufficiently precise to yield a satisfactory quantitative esti-
mate, Following definition of the three levels, an attempt will
be made to indicate their relations to the various definitions re-
ferred to previously, and to give asymptotic expressions which
may serve as convenient working definitions.




The general expressions for detection and determination will
be applied to radioactivity be means of the assumption of
“Poisson counting statistics.”” In order to make the concepts
generally useful, particularly in the fields of nuclear chemistry
and activation analysis, the formulae will be generalized to
take into account both long- and short-lived radioactivity, con-
tinuously-variable measurement parameters (such as dis-
criminator settings), and radioactivity measurements in the
presence of interfering radionuclides.

GENERAL PRINCIPLES

Part of the following discussion appears elsewhere in the
literature in somewhat different form, for example, in Refer-
ences (I and 6). The purposeof this section is to bring together
the concepts of qualitative and quantitative analysis limits, to
clearly show the relationships between an a posteriori decision
with the related confidence interval and an a priori *“‘detect-
ability,” and to lay the groundwork for general application to
the detection of radioactivity, to be discussed in the following
section. Readers who wish fuller explication of the underly-
ing statistical principles and methods—particularly those
relating to hypothesis testing, probability distributions, and
the estimation of statistical parameters—may find it helpful to
consult a basic statistics text, such as Dixon and Massey (7).

Definitions and Notation. The process of measurement
(experimental procedure) must be completely defined—
including the measuring apparatus, method of observation,
and sample nature—in order to draw valid conclusions with
respect to detection capabilities. In general, the physical
quantity of interest (mass, number .of atoms, nuclear cross
section, etc.) is not directly measurable, but is connected
to that which is observed (digital counts, voltmeter deflection,
etc.) through a calibration constant. The statistics of detec-
tion and determination apply directly to the observations
rather than to the underlying physical quantity, and therefore,
the following discussions will deal specifically with the ob-
served (or observable) signal (meter reading) and its as-
sociated random fluctuations. ~ Statistical conclusions drawn
in terms of the net signal may be very simply extended to the
related physical quantity by means of "the calibration factor.

Symbols will be defined, in general, as they appear in the
text, but it may be helpful initially to list the following:

Blank: uz limiting mean (or “true’” mean)
B observed value
op standard deviation

Gross Signal: pgs+s limiting mean
(S + B) observed value
Ost+p standard deviation
Net Signal:  us = pstz — Uz limiting mean

value derived from an
observation pair
os = (o’+5 + os)¥? standard deviation

S=E+B~—8B

The blank is defined as the signal resulting from a sample
which is identical, in principle, to the sample of interest, except
that the substance sought is absent (or small compared to ag).
The blank thus includes the effects of interfering species.

Qualitative Analysis. It is vital at the outset to distinguish
between two fundamental aspects of the problem of detection:
(1) given an observed (net) signal, S, one must decide whether

(7) W. 1. Dixon and F. J. Massey, Jr., “Introduction to Statistical
Analysis,” 2nd ed., McGraw-Hill, New York, N. Y., 1957.

a real signal has been detected—i.e., whether us > 0; (2)
given a completely-specified measurement process, one must
estimate the minimum #rue signal, us, which may be expected
to yield a sufficiently large observed signal, S, that it will be de-
tected. The first aspect thus relates to the making of an a
posteriori, binary (qualitative) decision based upon the ob-
servation, S, and a definite criterion for detection, Following
such a decision one should establish either an upper limit (if
“not detected”) or a confidence interval (if “‘detected”). The
second aspect relates to the making of an a priori estimate of
the detection capabilities of a given measurement process.

Let us consider first the a posteriori problem. Following an
experimental observation, one must decide whether or not that
which was being sought was, in fact, detected. Formally
known as Hypothesis Testing, such a binary, qualitative deci-
sion is subject to two kinds of error: deciding that the sub-
stance is present when it is.not («; . error of the first kind), and
the converse; failing to decide that it is present when it is
(8; error of the second kind). - The maximum acceptable
value for «, together with the standard deviation, oo, of the net
signal when ps = O establish the Critical Level, L¢, upon
which decisions may be based. Operationally, an observed
signal, S, must exceed L to yield the decision, “‘detected.”
Thus, the probability distribution of possible outcomes, when
the true (net) signal is zero, intersects L¢ such that the fraction,
1 — @, corresponds to the (correct) decision, “not detected.”

Once Lo has been defined, an a priori Detection Limit,
L», may be established by specifying Le, the acceptable level,
B, for the error of the second kind, and the standard deviation,
a5, Which characterizes the probability distribution of the
(net) signal when its true value (limiting mean), us, is equal to
Lp. (Identification of the “true” net signal with the limiting
mean assumes the absence of systematic errors. As with most
discussions of detection limits; we assume that the entire mea-
surement process may be replicated, so that errors become
random in nature. ~Systematic errors in a calibration factor,
connecting the net signal to the desired physical property, are
not involved at this stage.) Ly is defined so that the prob-
ability distribution of possible outcomes (when us = Lp) in-
tersects L, suchthat the fraction, 1 — (3, will correspond to the
(correct) decision, ““detected.” The detection limit, defined in
this manner, is equivalent to the*limit of guarantee for purity”
of Kaiser (6) and the “minimum detectable true activity” of
Altshuler and Pasternack (I). The significance of this partic-
ular form for the definition is that it allows one to determine,
for ‘a given measurement process, the smallest (true) signal
which will be “detected” with a probability 1— 3, where the a
posteriori decision mechanism has a built-in protection-level,
«, against falsely concluding that a blank observation repre-
sents a “real” signal. True signals, ug, lying between zero
and L, will have larger values for 8, and therefore, although
they may be “detected,” such detection cannot be considered
reliable.

Mathematically, the critical level is given as

L(;- = kaa'g (1)
and the detection limit,
Ly =L¢ + kﬁo'l) (2)

where k, and kg are abscissas of the standardized normal
distribution corresponding to probability levels, 1 — « and
1 — 8. The relationships between L, Lp, and the probability
distributions for ps = 0 and ug = Lj are depicted in Figure
2, where up represents the limiting mean for the blank dis-
tribution, and us+p represents the limiting mean for the
(observed) signal-plus-blank distribution.
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Figure 2. Hypothesis testing
Errors of the first and second kinds

Confidence Interval and Upper Limit. The preceding dis-
cussion implied that one need do no more than compare an
experimental result with the decision level in order to draw a
qualitative conclusion. In most cases, however, one has
available an estimate of the net signal, S, and its standard de-
viation, ¢, may be known. An interval may then be stated for
s, based upon z;—.,/90 and corresponding to the confidence level,
1 — . (zi-vs2isthe critical value for the standardized normal
distribution such that Prob {z < zi—,2} = 1 — v/2.) If the net
signal and its standard deviation are estimated by means of
replication, § is replaced by S; ¢, by s/\/ n; and zi.n0,
by tl_,,/g-s/\/;z. (Here, s represents the standard deviation
estimate computed from n-observations, and #.-./» represents
the critical value for the Student’s — ¢ distribution correspond-
ing to n — 1 degrees of freedom.)

1) If S(or S) > L, the decision, “detected,” should be re-
ported, and a symmetrical confidence interval should be
given: S = ziypo (or 8 £ ti—vps/ \/ n) where z;—,/; (or
ti—12) refers to a two-sided confidence interval.

(2 IfS(or 8) < L, the decision, “not detected,” should be
reported, and an upper limit should be given: S + z'i—,o
(or S + t'1—,s/"V n)where z'1—, (or t'1-,) refers to the one-sided
confidence interval. (The prime is here used to emphasize
one-sided.)

Note that in the special case where o = o4, and z’;—, isem-
ployed, L¢ is numerically equal to z'i—,0. This leadsto the
common, mistaken practice of equating z’—,o with the “de-
tection limit [(95%) confidence levell.” Such a statement
is seriously in error because the detection limit cannot be
characterized by a single “confidence level,” and because it
confuses the decision-making quantity (z’—,0 = L¢) with Lp,
which is used to assess the a priori detectability. To the
extent that ¢ = ¢, which may be satisfactory if ¢ is approxi-
mately constant in the region between zero and L, the use of
z'1-,0 (one-sided) to test a given result is exactly equivalent to
the use of L for this purpose.

A second possible mistake is the confusion of an a posteriori
upper limit with the a priori detection limit. Here again, the
two may coincide, if the net signal happens to be L¢, and if
o = ¢p and the one-sided confidence interval is employed.
Such a coincidence is not accidental, for the detection limit
is, by definition, the maximum upper limit. It must be re-
membered, however, that, in general, the upper limit depends
upon the specific experimental result, .S, whereas the detection
limit »must be independent of S, depending, rather, upon the
measurement process itself.

Finally, the difference between zo and -5/ 7 should be
discussed. The use of the latter, which depends upon the
variance estimate resulting from n-observations, is clearly
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Figure 3. The three principal analytical regions

“safer” in that it takes into account possible lack of knowledge
of ¢. On the other hand, if ¢ in the region between zero and
L is reasonably well-known (from *“theory” or extensive ob-
servation), and especially if it is approximately constant, more
realistic intervals and upper limits would be set through its

use rather than s/ \/; (Of course, o/ \/ n, replaces o, when
S is used in place of §). If ¢ is not approximately known, and
in control, in the region below Ly, it is impossible, in principle,
to estimate a limit of detection. In any case, replicates are
most desirable, if possible, and the estimate, s/ \/n, should be

consistent with ¢/ \/n, if the measurement process remains “in
control.” [An exactly equivalent, and somewhat preferable,
scheme for treating replication, would include the number of
observations, n, as a part of the definition of the measurement
process. The standard deviation of the mean of n-observa-
tions would then be simply o (for the over-all process) rather

than a/\/ n. The use of s/\/ n to test control rather than to
set limits would be achieved by routine evaluation of s¥/o?,
which should be within limits set by the distribution of y2/».]

Quantitative Analysis. Neither a binary decision, based
upon L¢, nor an upper limit, nor a wide confidence interval
may be considered satisfactory for quantitative analysis. One
wishes instead a result which is satisfactorily close to the
true value (limiting mean). Therefore, for us = Ly, the
Determination Limit, the standard deviation, oy, must be but
a small fraction of the true value. Such a definition is similar
to that used by Adams, Passmore, and Campbell who defined
a “minimum working concentration” as that for which the
relative standard deviation was 10 % (8).

The Determination Limit so defined is,

Lo = kqoq 3

where L is the true value of the net signal, us, having a stan-
dard deviation, og, and 1/k, is the requisite relative standard
deviation.

By way of summary, the levels L;, Ly, and L, are deter-
mined entirely by the error-structure of the measurement
process, the risks, o and 8, and the maximum acceptable
relative standard deviation for quantitative analysis. Lg
is used to test an experimental result, whereas L, and L,
refer to the capabilities of measurement process itself. The
relations among the three levels and their significance in
physical or chemical analysis appear in Figure 3.

Special Cases (numerical results). In order to make the
significance of Equations 1-3 clearer, a number of specific
choices for a, 8, and the various ¢’s may be helpful.

(8) P. B. Adams, W. O. Passmore, and D. E. Campbell, paper No.
14, “Symposium on Trace Characterization—Chemical and
Physical,” National Bureau of Standards (Oct. 1966).
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The left-hand diagram indicates coincidence of Lo with
zero; hence o = 0.50. The right-hand diagram indicates
coincidence of L¢ with Lp; hence 3 = 0.50

1. o« = B; ¢ = constant, If the risks of making both
kinds of mistake are set equal, then k, = kg = k, and

Lo = koo (4a)
Ly = Lo + kop = k (g0 + o) (4b)
If, in addition, ¢ is approximately constant,
Lo = ko (52)
Ly = 2ko = 2L¢ (5b)

In this case, the detection limit is just twice the critical level—
a situation which obtains in the Ilarge majority of
cases. Assuming that risks of 5% are acceptable, and that
the random errors are normally-distributed, the constant,
k, takes on the value, 1.645. The standard deviation of the
net signal is derived from

0% = gg+p + OB ©6)

where o3+ Tepresents the variance of the “gross” (directly-
observed) signal and o 52 represents the variance of the blank.
If the standard deviation is approximately independent of the
signal level, then

gt = o*§+3 + op? = 2 op? Y

Making the additional requirement that ko = 10—i.e., that
oo = 10%—we find that

LQ = kQG’Q = 10¢ (8)

The above results are summarized in Table I, which may be
used to provide convenient “working” formulae for the large
majority of problems. The first row is derived assuming
equivalent observations of sample (plus blank) and blank,

while the second row, which differs by 1/ \/2~, assumes that a
1ong history of observations of the blank make the second
term on the right in Equation 6 negligible.

2. Fixed Lp; varying (a,8). For a given measurement
process specification of a fixes Lc. Similarly, specification
of Ly or a together with the specification of 8 fixes Lp.
For a given Lp, however, an infinite set of combinations
(a,8) exist depending upon the location of L. For example,
the value for L, resulting from the above choice, & = § =
0.05, would also obtain for all choices of L between zero
and Lp. The extremes, Le = 0 and Ly = Ly (still assuming
op = oy), correspond to (&,8) = (0.5, 0.0005) and (a.8) =
(0.0005, 0.5), respectively (see Figure 4).

3. up = 0. Because the above equations do not involve
the magnitude of the background, per se, but only its stan-
dard deviation, there is no change. Such a state of affairs is
reasonable, for a background of any magnitude can be set
equal to zero simply by a change of scale; such a change can-
not be expected to alter the detection limit.

4. o =0. In this case, the effect is profound. L is
necessarily zero, and any net positive signal definitely indi-

Table I. ““Working’® Expressions for L¢, Lp, Lo.”

Lc Lp LQ
Paired observations 2.33 08 4.65ap 14.103
“Well-known” blank 1.64 o5 3.2 03 10 op

a Assumptions: « = 8 = 0.05; kg = 10; ¢ = oy = const,

cates detection (@ = 0). Lp = kgop, and Ly = kqog, where
op and o now depend upon the net signal only.

5. o%4s = ps + up. Poisson statistics—to be discussed
below under radioactivity. The standard deviation may not
be assumed constant; it increases with signal level.

6. aorfB = 0.50. If oneis willing to tolerate a 507 error
in wrongly identifying a false signal or in missing a true signal,
either L, becomes zero or L¢ = Lp. That is, under these
circumstances, the pair of levels, Ly and Ly, give the appear-
ance of just a single level. This is illustrated in Figure 4, If
both risks are set at 509, then both levels coincide with zero.
Therefore, any positive, net signal will be recognized as *real,”
and any nonzero “true” level in a sample will be “detectable.”
(That is, the detection limit is in fact zero!) However, such
fantastic detection capabilities must be viewed with caution,
for regardless of whether ug = 9, or if it is just above the
limit of detection, the conclusion will be wrong 50%, of the
time, and therefore the experiment could be performed equally
well by the flipping of a coin.

RADIOACTIVITY

Signal Detection. Application of the foregoing considera-
tions to radioactivity involves the fact that the gross “signal”
and “blank” observations are in digital form which in most
cases may be assumed to be governed by the Poisson dis-
tribution. (BExtra, non-Poisson variability of the blank is
discussed below, under “Interference and Background.”)
If the numbers of counts are sufficiently large, the distribu-
tions are approximately Normal, and we may therefore
readily estimate the variance of the net signal and establish
approximate levels of confidence and significance. Under
such circumstances, the variance of the net signal (number of
counts) is given by

0% = oo + 05 = (us + pa) + ‘—;5 ©

(B is assumed to have been derived from r-observations of
the blank.) Note that ¢ is not independent of signal level
as was assumed in Table 1. Its variation over the range
us = 0to us = Lp is trivial if pp is large, however. If
uz = 10 counts, opjoe =~ 1.5 (n-large). In the limit up = 0,
aploe = o, because oo = 0. This requirement, that oo = 0
and Ly = 0if up = 0, is peculiar to the Poisson distribution,
and represents one of the principal differences between the
“general” case and that of radioactive decay.

Remembering that o2 is the variance when ug = 0, and
that op?is the variance when ug = Lj, we obtain

Lo = ko 00 = ko (up + o3)1? (10)
Ly = Lc -+ kﬁG'D = L¢ kB (LD + 0'02) 1z (11)
Solving Equations 10 and 11 for Lp, leads to

ke 4L, ALer (v
Lp = L¢ 4+ — <1 1+ — - 12
D ¢ + 2 { + [ + o? + kazkﬁz] } 12
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Table II.  ““Working®’ Expressions for Radioactivity

L¢ (counts)?

Paired observations

Lp (counts)

Ly (counts)

— — /2
(0% = uz) 2.3V us 2.71 +4.65 Vs 50{1 +[1 +1—’%] }
“Well-known” blank
— S !
(2 = 0) 1.64 Vs 2.71 4+ 3.29V un 50{1+[1+%§]12}
Zero blank
(us = 0) 0 2.71 100
Asymptotic ratio®*
(S)o5) 1.64 3.29 10

« Dimensions (counts) apply to the first three rows only.

b “Well-known” blank case; for paired observations, multiply by /2.
¢ Correct to within 10% if us > 0, 67, 2500 counts, respectively, for each of the three columns. For paired observations, up > 0, 34,

1250 counts, respectively.

Estimates of the mean value and the standard deviation of
the blank thus allow the calculation of Ly and Lj for selected
values of « and 8 by means of Equations 10 and 12. A con-
siderable simplication takes place if k, = k','g = k. Equation
12 then reduces to the form,

L}_) = k2 ‘+‘ ZLC (13)

Equation 13 differs by the term, k2%, from that arising in the
previous discussion in which the “reasonable” assumption
was made that ¢2 = const. Thus, even if o5 = 0 = Lg,
we see that L, may never be equal to zero. The determination
limit, Lo, is given by

Lo = kooq = ko (Lo + a¢)V? 14)

which may be solved to yield

ko? 4oo? |12
B S
Again, convenient “working” expressions may be derived
from Equations 9, 13, and 15 for measurements in which
o = f8 = 0.05,and ky = 10. These expressions are given in
Table II.

Especially simple “working” expressions may be stated when
the number of background counts, up, is “large.” Such
simplified expressions, presented in terms of the ratio of
the net signal to the standard deviation of the background
(“signal/noise”), appear in the bottom row of Table IL
Note the correspondence of the asymptotic ratios to the
“working”’ expressions in Table I.

The occurrence of nonintegral values for L, and Lg in
Table II is not at all inconsistent with integral, Poisson dis-
tributions, because Lp and L, represent the means of such
distributions, and such means may take on any positive value,
integral or nonintegral. L., on the other hand, represents a
decision level against which an integral, experimental result
must be compared. An exact, Poisson treatment would thus
lead to an integer for L., but only discrete values for « would
then be possible. The magnitude of the error in significance
level, due to the assumption of normality, is worth consider-
ing with respect to the data in Table II. For example, L,
is there given as 2.71 counts for the zero blank case, and this is
supposed to correspond to 8 = 0.05. Examination of the
correct, Poisson distribution shows that the probability of
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observing § = L = 0 counts when ug = Lp = 2.71 is ap-
proximately 0.07 instead of the desired 0.05.

Interference and Background. Thus far, uz and op have
been used to refer to the “blank.” In observations of radio-
activity one frequently approaches the situation where the
blank is due only to backgréund radiation. When such is
not the case, it may be desirable to decompose the blank into
its separate components: background and interfering ac-
tivities. Using b to denote background and I to denote in-
terference, the above quantities take the form,

BB = Mp + Hr (16)
op = 0?4+ o/* an

If the variances, o3? and ¢,2, arise from the Poisson distribu-
tion, they will be equal ‘to the respective mean values, u,
and u;; if the interference has instead a fixed relative stan-
dard deviation, f;, its variance will be equal to (fiur)®.. The
distinction between these two situations may sometimes be
quite critical in fixing the detection limit. Its significance in
choosing between alternative detection systems will be dis-
cussed in a separate publication. Note that the situation
may also come about where u; = 0, but o2 corresponds to an
extra (non-Poisson) component of variance. Such extra
variance, which may arise from cosmic ray variations or in-
strument instability, must be included in the estimate of
o,? and, hence, in the estimates of L, Lp, and L.

Limits for the Related Physical Quantities. In order to
make the decision, “detected” or “not detected,” one needs
to know only the net number of counts resulting from a
specific experiment, and the critical number of counts, L.
Limits for qualitative and quantitative analysis and upper
limits or confidence intervals for actual results, however, are
of value only when expressed in terms of the physical quan-
tity of interest, such as grams or atoms. The connection is
simply made by means of the relevant calibration factor. For
example, the detection limit, L,, may be related to the mini-
mum detectable mass, m(g), by means of Equation 18,

Ly = Kmp (18)

where K represents an overall calibration factor relating the
detector response to the mass present. Thus, X would be
equal to unity for direct (ideal) weighing; it would be equal
to the absorbance per gram for spectrophotometry if the




sample cross-section is fixed; it would be equal to the num-
ber of counts per gram for activation analysis.

Although the constant, K, is not involved directly in the
statistics of the detection limit, its role is fundamental, and
it must be included when choosing between experimental
procedures or in optimizing a given procedure. For the
particular case of nuclear activation,

K = P(Z)SO\, )T\ t,ADe(X) (19)

where P = production rate (nuclei/g-sec)

S = saturation factor = 1 — e™"

T=(MN (0 — e ) (seconds) (a generalized
counting interval relating initial counting rate
to observed number of counts).

e = detection efficiency (counts/disintegration) (chem-
ical yield may be incorporated in e, when
appropriate).

¥ and A are characteristic of the nuclear reaction being
utilized; they represent the reaction cross section (cm?) and
product decay constant (sec™Y), respectively. r, ¢, and Af
are the times (sec) for activation, delay (decay), and counting,
respectively. X represents a variable detection parameter,
such as absorber thickness, discriminator setting, etc. A
similar expression may be written for the mean number of
counts from an interfering radionuclide:

pr = my [PEISOG)TOLEADe(X)] (20)
the mean number of background counts is given by
w = b(X)At 21

where b(x) is the background rate, which also may depend
upon the detection parameter, x. The preceding expressions
may be incorporated into a single equation for the mass-
detection limit:

_ k2K [w + o5 + wr + (fru)TV?

22
P(Z)SO\TTO\L,ADX)

mp

Equation 22, although somewhat complicated, allows one to
calculate the minimum detectable mass for a given activation-
detection procedure, where there are no a priori restrictions
placed upon the half-life of the product radionuclide (long-
vs. short-lived) and where interference may be considered in
a completely general and unrestricted manner. In order to
-include more than one interfering radionuclide, one simply
replaces u; by Y urand (fiu)?by D (fn? If the variances
of background and interference are governed by the Poisson
distribution and if they are determined by ‘“‘equivalent™ ob-
servations, the radical in the numerator of Equation 22 takes
the simpler form: (2u, + 2ur)V? If the variances are negli-
gible, the radical becomes (u + )V

Systematic errors in calibration factors are not a part of the
present discussion.  Such errors can in no way affect the crit-
ical level, Lq, because L. refers only to the instrumental re-
sponse at which the decision is made—*‘detected” or “not
detected.” All physical quantities deduced from Lp, Ly,
or an “observed” net signal, however, contain uncertainties
due to calibration factor errors. Because the calibration
factor error is here considered systematic, while the observa-
tion (response) error is random, they cannot be simply com-
pounded. As a result, the corresponding physical quantities
must be characterized by error limit intervals, the upper limits
of which might be used to provide ‘“‘safe” estimates for mp
and myg.

Relative detection capability has frequently been evaluated
in terms of the “figure of merit.” Figure of merit, in the
limit of very small (net) sample counts, is usually defined as
us?/up; this expression is approximately the reciprocal of the
relative variance of the net signal. Use of the above expres-
sion for comparing detector sensitivities generally involves
the replacement of ug by the product of the sample disinte-
gration rate and the detection efficiency, and various detectors
are then compared by examining the respective ratios, €2/u.
Such a procedure suffers from a number of limitations, when
compared to the use of Equation 22 (or the analogous equa-
tions for m¢ and mg). The limitations include: (1) no al-
lowance is made for short-lived radioactivity; (2) inter-
ference—especially ““decaying” interference—is not con-
sidered; (3) the formula may not be applied to the comparison
of critical levels or detection limits, because a- and - type
errors have not been included; (4) the approximation, pg
<< up, is built into the formula. -This last factor, which
would lead one to conclude that one particular detection
system is better than another, may lead to the wrong con-
clusion for mp or mgy. That is, the exact equations, of the
form of Equation 22, can lead to the conclusion that the one
detection system has the lower limit of detection, but that
the other has the lower limit of determination.

ILLUSTRATIONS

In order to make clear the application of the preceding
formulae, three examples will be given, one selected arbi-
trarily from among “standard” methods of chemical analysis,
another dealing with the simple detection of radioactivity,
and a third dealing with a more complex problem in activation
analysis.

(1) SPECTROPHOTOMETRY
The fundamental relation governing the absorption of light
by matter may be written,

A = pcl + Ao 23)

where 4 and A, are the absor bances for samples having con-
centrations, ¢ and 0, respectively; [ is the cell path length;
u is the absorptivity. In order to relate the problem to the
preceding discussion, we make the following identifications.

(a) A, = blank, uy, which is here set equal to zero, by
adjustment of the transmittance reading to 1007 using a
“blank” sample.

(b) o3 = standard deviation of the blank absorbance 0.

(¢) A = net signal, ug, which here equals the gross signal,
because A, has been set equal to zero.

(d) K = ul, the calibration factor.

(e) o = standard deviation of the net signal, 4.

Experimental observations on the spectrophotometric de-
termination of thorium using thorin, yielded: oz = 0.0020,
and K = 58.2 [/g (9). The sample standard deviation, og,
was observed to be relatively constant and equal to g5, over
the concentration range studied. A particular sample an-
alyzed was observed to give a response (absorbance) of 0.0060.
Using these data and expressions for paired observations from
Table I, we find the following:

Decision: Lo = 2.33 o3 = 0.0047. Thus, the observed re-
sponse, 0.0060, leads to the decision, “detected.”

(9 L. A. Currie, G. M. France Ill, and P. A. Mullen, National
Bureau of Standards, unpublished data (1964).
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Table III. Detection of Potassium in Sodium

Detection limit (g)
Reaction Target nuclides Product? Interference-free m(Na) = 1g
(n,y) K (6.9%) 42K (12.4 br) 1.3 X 107% 0.26
25Na (100%) 24Na (15 hr)
(v #K (93.17) #K (7.7 min) 7.7 X 1070 6.0 X 107
28Na (100 7)) 22Na (2.6 yr)

= [sotopic abundance listed in parentheses.
5 Half life listed in parentheses

Confidence Interval: Because the signal is considered
detected, we may set a confidence interval, rather than an
upper limit. The absorbance interval for the signal at the
959 level of confidence is 0.0060 = 1.96 (0.0020). The cor-
responding thorium concentration interval, assuming negli-
gible error in the calibration constant, is 36 to 170 ug//, and
the estimate of the mean is 103 ug/l.

Detection Limit: L, = 4.65 oz = 0.0093. Thus, the
minimum detectable concentration (that which will give a
signal exceeding L., 95 % of the time) is equal to 160 ug/l.

Determination Limit: L, = 14.1 o5 = 0.0282. Therefore,
in order to obtain a precision (relative standard deviation)
as small as 10%, one must have a thorium concentration of
480 ug/l.

(2) RADIOACTIVITY

Let us next consider the detection of the 7.7-min positron-
emitter, K. We shall assume that the radionuclide is de-
tected by means of the 0.51-MeV positron annihilation quanta
using a sodium iodide crystal having a background of 20 cpm
and a detection efficiency (for **K) of 32%. Our aim will be
to calculate the various limits in terms of activity (disintegra-
tion rate) instead of mass. As will be shown in a separate
publication, the counting interval, Az, which leads to the
minimum detection limit is approximately twice the half-life;
we shall therefore take Ar = 15.4 min. Equation 18 here
takes the form, L, = Kap, where a, represents the minimum
detectable activity, and K = ¢T. Because the delay time, ¢,
is not involved in the present example, T = (1—e ™9\
(For long-lived species, T, the “effective counting interval,”
reduces to Az, the physical counting interval.) Using the
fact that up = 20 cpm X 15.4 min, one may calculate Le,
Ly, and L, directly from the formulae for paired observations
given in the first row of Table II. The above value for e
may then be combined with 7 = 8.33 min, in order to de-
termine ac, ap, and a,. The results are given below:

ac = 15.3 dpm
ap = 31.6 dpm
ao = 114 dpm

Let us suppose than an observation of sample plus background
gives a total of 340 counts. The net signal would then be
32 counts (assuming that the background observation yielded
308 counts), and its estimated standard deviation would be
25.4 counts. L¢, as calculated from Table II, is equal to
40.8 counts, and therefore such an observation would lead to
the conclusion, “not detected.” (The comparison might be
made on the basis of the corresponding disintegration rates,
12 dpm-observed, and 15.3 dpm = a,, but the conversion
from counts to dpm is unnecessary for making the decision.)
The upper limit (95%, confidence level) for the net signal is
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equal to 32 + 1.645 (25.4) = 73.8 counts; this is equivalent
to a disintegration rate of 27.6 dpm.

The effect of half-life on the above limits is notable. For
example, if *¥K had a very long half-life, 7 — 15.4 min and
ap would be reduced to 17.1 dpm. A long half-life, of course,
would make useful a longer counting interval. If the interval
were 10% min, for example, the minimum detectable activity
would be further reduced to 2.06 dpm. Thus, when half-
life is the only variable, one can detect considerably smaller
activities for long-lived species than for those which are short-
lived.

(3) ACTIVATION ANALYSIS

The foregoing principles will next be applied to a somewhat
more complex example in which one must consider both the
effects of various product half-lives and the effects of inter-
ference arising from alternative nuclear projectiles. The
problem to be examined is whether reactor neutrons or linac
bremsstrahlung are better for the detection of potassium. The
minimum detectable mass will be estimated for the inter-
ference-free situation, and also for that in which the potassium
is accompanied by 1 gram of sodium. Details of the calcula-
tion will not be presented here, but only the input data and
the results. The results were calculated directly from Equa-
tion 22. The input assumptions follow: '

(a) thermal neutron flux-10'3 (n/cm?2-sec).

(b) bremsstrahlung flux distribution-101¢/E (quanta/MeV-
min-cm?) (electron beam energy well above the giant reso-
nance).

(¢) irradiation time and counting time-10° min or two
half-lives (potassium product) whichever is less.

(d) delay time-negligible.

(e) nuclear cross sections—taken from the literature.

(f) interference correction accuracy, fr-1%.

(g) detection— paired observations, sodium-iodide count-
ing of the positron annihilation peak (bremsstrahlung-pro-
duced activity) or the 1.51 MeV K ~y-peak (neutron-pro-
duced activity). Interferences due to sodium activities were
estimated from the respective gamma ray spectra. The back-
grounds and detection efficiencies are as follows:

Efficiency
(y-efficiency X branching)
Reaction Background K Na
(n,y) 12 cpm 0.014 0.0097
(v,n) 20 cpm 0.32 0.29

Minimum detectable masses of potassium are given in
Table III. Note that the minimum detectable activity cal-
culated for 3K in the preceding example applies also to the
present example; the minimum detectable mass differs only
by the production factor, P(Z), which here equals 4.11 X
1020 dpm/g for #K.




The results given in Table III indicate that both a reactor
and an electron linear accelerator provide excellent detection
capabilities for potassium in the absence of interference, the
reactor being somewhat better. The importance of Equation
22 for detection limit estimation in the presence of inter-
ference, however, becomes quite clear upon examination of
the last column of Table III. Here, the detection limit by
bremsstrahlung irradiation has become about one thousand
times poorer, and thermal neutron activation has become
practically useless.
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