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Abstract. A model has been developed, and tested 
experimentally, to account for the apparent dependence of the 
effective cross-sectional area of pistons in gas-piston-gauge 
pressure standards on the particular gas with which the gauge 
is operated, in the absolute mode. The model treats a pressure 
drop or loss that depends on the pressure difference across the 
gauge (PI - P2), the fall rate of the piston, the density of the 
gas and the viscosity of the gas. The model was tested using 
helium, neon, argon, nitrogen and krypton, and several values 
of (PI - P2). An algorithm was developed for calculating the 
piston cross-sectional area. The experimental results confirmed 
the model and resulted in a reduction in measurement 
uncertainty arising from this effect by approximately one order 
of magnitude. 

1. Introduction 
The calculated cross-sectional area of pistons in gas-piston- 
gauge pressure standards has been found to depend on the 
particular gas that flows through the annular space between 
piston and cylinder. The apparent difference in area between 
helium and nitrogen can be greater than 20 parts per million 
(PPM) in the absolute mode. This effect contributed the largest 
remaining uncertainty in the pressure generated or measured 
using particular gas-piston gauges. It was the objective of the 
present work to develop and experimentally test a model that 
accounts for the discrepancy and to develop an algorithm for 
calculating piston cross-sectional area. 

A gas-piston gauge consists of a piston fitting into a 
matching cylinder. The annular space between the piston and 
cylinder is filled with a gas. The piston is loaded with known 
mass artefacts, i.e. weights. The force due to pressure acting on 
the base of the piston is balanced by gravitational force on the 
piston and its load of weights so that at equilibrium the piston 
floats. In operation, the piston and weights are rotated to 
relieve friction and to ensure concentricity. The piston falls 
slowly and the gas flows up through the annular space between 
the piston and cylinder. The fall rate is measured. Hereinafter 
the ‘piston cross-sectional area’ will be abbreviated to ‘piston 
area’. 

2. Model and derivation of equations 
The cross-float procedure for comparing piston gauges is 
described in a paper by Heydemann and Welch (1975). The 
experimental configuration is illustrated in figure 1. In this con- 
figuration a test gauge or the gauge to be calibrated (indicated 
by C) is in parallel with a reference gauge (indicated by R). At the 
level indicated on the figure a pressure balance exists. 

Figure 1. Sketch of cross-float configuration. 

In the treatment in this paper, the gas-piston gauges are 
operated in the absolute mode, i.e. the piston and weights are 
enclosed by a bell jar. The bell jar is evacuated by a vacuum 
Pump. 

In the model adopted in the present work the area of 
interest is the mean cross-sectional area of the piston. Correc- 
tions are made for thermal expansion and contraction. Elastic 
distortion is negligible in the range of pressure of present 
interest. The conventional concept of piston gauge effective 
area is not used here. A pressure drop, AP, is introduced for 
each gauge to account for the apparent change in area with gas 
species. The AP values are also considered to include errors in 
measurements of various quantities. 

The pressure at the base of the C gauge, P,, is given by 

p c  = ( M c g / A c )  + pbc - pH - (1) 
where M ,  is the mass load on the piston, g is the acceleration 
due to gravity, A,  is the mean area of the piston at temperature 
t ,  Pb, is the back pressure above the gauge in the absolute mode, 
PH is the pressure equivalent of an upward force on a hat- 
shaped structure above the weight stack and AP, is the pressure 
drop introduced above. 

At the same level, the pressure on the R-gauge side, PI, is 
given by 

pr = (Mrg/Ar) + pbr + ph - Apr ( 2) 
where Ph is the pressure difference due to a difference in the 
heights of the two gauges above an arbitrary horizontal plane; 
all other quantities correspond to similar quantities in 
equation (1). PH is not included in equation (2) since its mag- 
nitude for the reference gauge is small, estimated to be less than 
0.2 part per million. 

An imbalance in pressure between P, and P, is indicated, by 
the diaphragm gauge in the figure, as P,; thus 

P, = PI + P,. (3) 
By substituting equations (1) and (2), equation (3) becomes 

( M c g / A c )  + (pbc - - = (Mrg/Ar) + (Pbr + ph f pu) - Apr. 

(4) 
Designating (AP, - APJ as DP, 

DP = (APC - &PI) = [ ( M c g i A , )  - (M,g/A,)l 

+ (Pbc - pbr - pH - Ph - pu). (5) 
Since the pressure balance exists at the experimental tem- 

perature t ,  the piston areas A, and A ,  are expressed as 

A, = Ac(t) = A,(23) [l + 2a,(t - 23)] = AC(23)(TC), (6)  
and 

A , = A , ( t )  =A,(23)[1+ 2~1,(t-23)]=A,(23)(TC), (7) 

where GI, and a, are coefficients of thermal expansion. The value 
of GI, for ‘Vasco supreme’ of which the pistons and cylinders of C 
gauges are constructed is 9.405 x ‘C-’; the value of a, for 
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tungsten carbide of which the pistons and cylinders of the R 
gauges are constructed is 4.144 x 

By substituting equations (6) and (7) and rearranging 
equation (5), Ac(23) is expressed as 

"C-'. 

A,( 23) = ( M c g )  [ 1 + 2aC( 23 - t ) ] /  

CDP + ((AV,d/'4,0(23)(TC)J 

- ( P b c  - p,, - p ,  - p ,  - Pull. (8) 
Equation (5) is used to calculate DP from measurements for 

the various parameters and reference values of Ac(23) and 
A,(23). Equation (8) is used to calculate Ac(23) from measure- 
ments of the various parameters, an estimate of DP: and the 
reference value A:(23). 

By setting DP = 0 in equation (8). one arrives a t  an equation 
of the form that is conventionally used to calculate Ac(23). 
Using the conventional equation, calculated values of A,( 23) 
have been found to depend on the particular gas passing 
through the space between the piston and cylinder. The gas- 
species dependence is illustrated in table 1. The difference 
between the value of area for nitrogen and that for helium is 
23.4 parts per million of area. 

In the development that follows, a source of the major 
portion of the pressure drops ( A P )  will be identified, the 
relationship between AP and relevant gas properties will be 
developed and used to calculate values of DP, the DP values will 
be used to calculate values of Ac(23). 

Table 1. Typical dependence of conventionally calculated area 
on gas species, absolute mode. 

Area Departure from 
Gas ( m2) helium value ( PPM) 

Helium 8.107 752 - 
Neon 8.107 805 6.5 
Argon 8.107 929 21.8 
Nitrogen 8.107 942 23.4 
Krypton 8.107 977 27.8 
Carbon dioxide 8.108 018 32.8 

3. Hagen-Poiseuille and pressure drop or loss 
The space between the piston and cylinder of a piston gauge 
approximates an annulus of outer radius b', inner radius a' and 
length l ' .  In the operation of the gauge, the flow of gas through 
this space approximates to the flow through a channel of 
concentric cylindrical annular section. 

In 1839, Hagen (1839) investigated the laminar flow of 
water through brass tubes of various diameters and expressed 
the pressure head, h, of his supply tank as a function of the mass 
of water flowing out per second, W (Prandtl and Tietgens 1934) 

(9) h =  h ,  + h2 = a W +  b W 2  

where a and b were constants for each tube. Hagen observed 
that the part h,  = b W 2  of the total head was used to impart 
kinetic energy to the fluid. Prandtl and Tietgens (1934) intro- 
duced the mean velocity U rather than W, the pressure difference 
Ap = pgh, and the viscosity of the fluid p to transform equation 
(9) to 

Ap = Ap, + Ap2 = (8p2U/r2)  + (2.7pU2/2) (10) 
in CGS units, where 2 is the length of the tube, r is the radius of 
the tube and p is the density of the fluid. The second terms on 
the right-hand side of equation (10) represent the pressure 
difference required to impart kinetic energy to the fluid. 
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Poiseuille (1840) independently found the same law for the 
laminar flow of water through capillary tubes of glass, although 
his formulation lacked the pressure difference required to 
impart kinetic energy to the fluid. An equation of the form of 
(10) is generally referred to as the Hagen-Poiseuille equation. 

For a concentric cylindrical annulus with a pressure dif- 
ference of ( P , - P 2 )  across the annulus, equation(10) can be 
written 

(11) (PI - P2) = (pU/B)  + KpG2 

where B is a factor that incorporates the geometry of the 
annulus and K is a constant. If the second term on the right- 
hand side of equation (1 1) were much smaller than the first, 

U E B ( P 1 -  P2)ip (12) 
and the second term becomes 

K p G 2 = [ K B ( P ,  - P J / p ] ( @ ) = K ' ( P 1  -PZ)(Up/p) .  (13) 

The rationale for choosing to derive this form of the second 
term will be given later. 

The pressure difference represented by equation (13) is 
conventionally associated with the kinetic energy required to 
create a parabolic velocity distribution in the annulus (in this 
case) near the entrance (Santeler 1986). The net effect of the 
transition to the constant velocity profile is to lower the flow 
rate for a given pressure difference, ( P ,  - P2).  across the 
channel or, alternatively, to increase the pressure drop required 
for a given flow rate when compared with the Poiseuille case 
(Worden 1962). 

The equations in this section apply to laminar viscous flow 
of fluids including gases. The question arises whether for the 
absolute mode (that is, with the space above the piston 
evacuated) of operation of piston gauges, the flow through the 
annular channel can be treated as viscous. Conventionally, the 
gas flow is considered to change from viscous at  the inlet of a 
channel to a transition state in the middle and finally to 
molecular a t  the vacuum exit (Santeler 1986). Santeler (1986), 
discussing a leak in a vacuum system in which the pressure on 
the vacuum side of the leak was 0.013 Pa and the external 
pressure was 101 325 Pa, concluded that the gas flow in the leak 
was viscous. The piston gauge system would seem to be 
sufficiently similar to adopt a laminar viscous flow mode; on 
which to interpret experimental results, and to use the results to 
ascertain the applicability of the model. Other considerations 
have led to the same conclusion. 

4. Piston-gauge model flow 
For the piston gauge treated here, the model flow is laminar 
viscous flow of gas through the annulus between piston and 
cylinder. A loss or pressure drop of the form 

K ' ( P ,  - P,)Up/p 

is taken to account for the major part of the pressure drop, AP, 
introduced above to account for the dependence of conven- 
tionally calculated piston area on the gas species flowing 
through the annulus. In the present treatment the areas are 
mean areas of the pistons, accounting for thermal expansion 
and contraction. The effects of elastic distortion are negligible 
for the range of pressure investigated in this work. The 
conventional piston gauge concept of effective area is not used 
here. 

5. Experimental details 
In equation (13), K '  is a coefficient with dimensions of length. 
K '  varies from piston gauge to piston gauge. The mean velocity 
U is proportional to the fall rate ( F R )  of the piston; equation (13) 
becomes 

K p U 2  = K " ( P ,  - P 2 ) ( ~ ~ p / p ) .  (14) 
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Experimental determinations of K "  have been made for three 
piston gauges in the present work. 

Two sets of experiments were performed to investigate the 
validity of the approach outlined above. In the first set of 
experiments, each of two piston gauges of the type conven- 
tionally calibrated at the National Bureau of Standards, desig- 
nated C, and C 2 ,  was cross-floated in the absolute mode with a 
reference gauge, R. Helium, neon, argon, nitrogen, krypton and 
carbon dioxide were used as fluids. Helium and nitrogen are in 
general use in piston gauges. The other gases were chosen 
primarily on the basis of the value of the ratio p/p which 
appears in equation (14). On a scale of ( F R P / ~ ) ,  neon and argon 
fall between helium and nitrogen; krypton and carbon dioxide 
extend the range beyond nitrogen (Jones 1978, 1984, Hellmans 
et al 1974). Gauges C1 and C 2  were separately cross-floated 
with gauge R with a pressure difference of ( P ,  - P 2 )  across the 
gauges for each of the six gases. Gauge C 2  was cross-floated 
also with gauge R at other values of ( P I  - P 2 ) ,  79 190 Pa and 
127 100 Pa, using helium, nitrogen and krypton. Measurements 
oft ,  PB, PU, calculated values of P ,  and estimates of values of 
P,  were used in calculations. 

In a second set of experiments, each of the piston gauges was 
operated in the absolute mode against the NBS gas ther- 
mometer manometer, at each of three pressures, 96 000 Pa, 
62000 Pa and 27000 Pa at temperatures near the reference 
temperature, 23 "C. At the 62000 Pa pressure the gas used was 
helium, at the other two pressures the gases used were helium 
and nitrogen. The conventionally calculated areas at 23 'C for 
gauges R, C, and C 2  are listed in table 2. The number of 
measurements N ,  the number of sets of measurements and an 
estimate of the standard deviation, SD (in PPM), are included. 
The calculated areas for helium at 27000 Pa are used as 
reference values in this work: Ag(23) = 3.35821063 x m', 
&,(23)=8.10771096 x 10-5m2 and Ag2(23)=8.10755816x 

m2. 

Table 2. Mean areas of three piston gauges in the absolute 
mode determined from gas thermometer manometer 
measurements. 

( P , - P 2 )  A SD 
Gauge (kPa) Gas m2) (PPM) N Sets 

R 27 He 
27 N 
62 He 
96 He 
96 N 

C, 27 He 
27 N 
62 He 
96 He 
96 N 

C2 27 He 
27 N 
62 He 
96 He 
96 N 

33.582 106 3 
33.582 233 8 
33.582 131 8 
33.582098 5 
33.582 276 7 

8.107 71096 
8.107 874 66 
8.107 75609 
8.107 796 13 
8.108 034 23 

8.107 558 16 
8.107 713 14 
8.107 606 57 
8.107 658 05 
8.107 872 21 

0.65 40 4 
0.68 52 6 
0.76 60 4 
1.2 93 6 
0.55 56 4 

2.4 61 5 
1.7 40 5 
0.79 59 4 
0.46 32 2 
0.67 60 4 

1.5 62 4 
1.0 28 4 
0.55 60 4 
0.70 79 5 
0.68 60 4 

6. Treatment of data 
The data generated by the first set of experiments and the 
reference values of areas from the second set of experiments are 
used in equation (5) to calculate values of DP. In the cross-float 

configuration, the model adopted above treats a combination of 
kinetic-energy-related pressure drops or losses in two gauges as 
the major part of DP: 

DP = (AP, - AP,) N K ; ( P ,  - P,)FR,(~JP,) 

- K k ( P i  - PZ)FRR(PK/PR). (15) 
Since the temperature of the gas is nearly equal in the two 
gauges, the densities (Worden 1962) and viscosities (Jones 1978, 
1984) can be set equal, thus 

DP 1 [ (PI  - PZ)p/p](K;FRC - K ~ F R , ) .  (16) 
The loss in the reference gauge is inferred, from the relative 
magnitude of the effect of gas species on conventionally 
calculated area, to be smaller than the losses for the other two 
gauges. Therefore, as a preliminary indication (only) of the 
qualitative validity of the model, DP is plotted against 
(PI - P 2 ) ~ ~ , ( p / p ) ,  in figure 2. The plot is for gauge C, in the 
absolute mode at 102 600 Pa. The bars on the points represent 
i 1 PPM of area. The curve drawn through the points is seen to 
be smooth, representing a monotonic relationship and qualita- 
tively confirming the validity of the quantity plotted on the 
abscissa. Note that a straight line could be fitted to the first four 
points (helium, neon, argon and nitrogen). The points would fit 
the line very precisely, within several tenths of ,a part per 
million. 

Values of K k ,  K &  and K g 2  have been calculated using the 
data generated in the second set of experiments. By separating 
and equating terms on both sides of equation (15), one can 
approximate APR 

ApR Ki(Pl - PZ)FRR(P/P)' (17) 

KR = CAPd(J(P1- P2)I/CFRR(P/P)I. (18) 

By rearranging equation (17), one can approximate KR 

The ratio of the calculated area A ,  in table 1 to the reference 
area, &(23), less unity is an approximation to A P J ( P ,  - P2). 
The slope of a linear fit of the approximation against [FR,(P/p)] 
is an estimate of KR. The value thus determined using the data 
generated by the second set of experiments is 12.2 x 

The right-hand side of equation (17) is now referred to as 
AP,, the kinetic-energy-related drop in gauge R. Having 
determined K k  experimentally, values of AP, are added to 
corresponding values of DP to arrive at AP,, which represents 
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the kinetic-energy-related pressure drop in C, or C2, alone. 
Thus, DP = AP, - APR, AP, = DP + APR. 

Although, as indicated in figure 2, the results for carbon 
dioxide fit the model, the operation of the piston gauges was 
sufficiently sluggish for carbon dioxide that the imprecision was 
considered to be atypical of that for the other five gases. 
Therefore, detailed analysis was confined to data for helium, 
neon, argon, nitrogen and krypton. 

The variation in measured fall rate, FR: for each set of 
measurements was several per cent of FR. Thus, a representa- 
tion of A P  in the form K ~ F R '  would include measurement 
imprecision nearly double that in the K " ( P ,  - P J ( F R ~ / ~ )  
representation. The group ( F R ~ I ~ )  is proportional to a Rey- 
nolds number: R =  Dpii /p ,  where D is a characteristic 
dimension. 

7. Results 
Using the experimental measurements of various quantities on 
the right-hand side of equation (5) and reference values of A ,  
and A,, the equation provides values of DP. In order to use 
equation (8) to calculate A ,  at the reference temperature, 23 "C, 
a measure Of DP is required. This measure of DP is obtained from 
an equation polynomial in ( P ,  - P,)(FR,P/~) fitted by least 
squares. Alternatively, APR is calculated using the experimental 
value of KL in equation (17) and added to DP to arrive at APc; 
AP, is then fitted against ( P ,  - P2)(~~,pip). From the measure 
of AP,, calculated using the fitted equation, APR is subtracted, 
providing a measure of DP to be inserted in equation (8) to 
calculate A,(23). For the data in the present work, either of 
these methods can be used and the resulting values of A,(23) 
are of essentially equal precision. The first is, of course, simpler 
to use. The polynomial equations are usually quadratic in 

For gauge C, in the absolute mode, at ( P ,  -P2) = 
102 600 Pa, the values of AP, = DP + APR were fitted to an 
equation quadratic in ( P ,  - PZ)(~~,p/p). Values of calculated 
AP, less APR were inserted for DP in equation (8) to calculate 
values of A,(23), for helium, neon, argon, nitrogen and krypton. 
The results are listed in table 3. The mean value of A,(23) was 
8.1077108 x IO-' m2 with an estimate of standard deviation, 
SD, of 3.5 x IO-" m2 corresponding to a relative SD of 0.43 part 
per million of area. The reference value, Ag(23), for gauge C, 
was 8.10771096 x lo-' m'. 

(P1 - PZ)(FRP/P). 

Table 3. Area for gauge C, in absolute mode at (P, - P 2 )  = 
102 600 Pa. 

Gas Ac(23)(10-5 m2) 

Helium 8.1077140 
Neon 8.1077055 
Argon 8.1077105 
Nitrogen 8.1077 140 
Krypton 8.1077100 

Ad23) = 8.1077108 
SD = 0.0000035 

Rel. SD = 0.43 PPM 

Ag(23) = 8.10771096 

For gauge C 2  in the absolute mode at three different values 
of ( P ,  - P 2 ) ,  79 190 Pa, 102 600 Pa and 127 100 Pa, values of 
APc were fitted to an equation cubic in (PI - P 2 ) ( ~ ~ C p / p ) .  
Values of A,(23) were calculated for 9 of the 11 points. The 
point for argon at 102600 Pa was excluded as the DP was 
obviously too large. The fall rate for the low-pressure helium 

point was inconsistent and it was consequently excluded. The 
results for the 9 points are listed in table 4. The mean value of 
A,(23) was 8.107558 x m2 with a SD of 1.0 x lo-'' m2 
corresponding to a relative SD of 1.2 parts per million of area. 
The reference value, Ag(23), was 8.107 558 2 x 

As these values indicate, the model and algorithm developed 
in this work result in very precise values of A,(23). 

In figure 3, values of DP are plotted against ( P ,  - 
P Z ) ( ~ ~ , p / p )  for gauge C ,  in the absolute mode at ( P ,  - P 2 )  = 
102 600 Pa. On the same figure APR calculated using K [ and 
AP,, the sum of DP and APR, are also plotted. APR is the kinetic- 
energy-related pressure drop in the reference gauge R, AP, is 
the corresponding pressure drop in gauge C,, and DP is the net 
effect of these two quantities in the cross-float configuration, 
DP = AP, - APR. This figure illustrates the composition of the 
pressure drop which accounts for the former apparent de- 
pendence of A,( 23) on gas species, and the decomposition into 
separate pressure drops in the two gauges in the cross-float 
configuration. 

Again, a straight line could be fitted very precisely to the 
first four points of the DP and AP, plots. 

m2. 

Table 4. Area for gauge C, in absolute mode at three values of 
(P1 - P2h 

(P,-P,)(kPa) Gas Ad23)(10-' m2) 

102.6 Helium 
Neon 
Nitrogen 
Krypton 

79.1 Nitrogen 
Krypton 

127.1 Helium 
Nitrogen 
Krypton 

8.1075620 
8.1075625 
8.1075715 
8.107541 8 
8.1075655 
8.1075500 
8.1075470 
8.1075670 
8.1075580 

Ac(23) = 8.107558 
SD = 0 . ~ 0 1 0  

Rel. SD = 1.2 PPM 
Ag(23) = 8.1075582 

L 
c 

4.0 t 

0 80 160 240 320 
(q -?2 ) (FRp/p )  ( l o 3  P O  m-') 

Figure 3. Plots of DP, D P ~  and D P ~  against (PI - P*)(FRP/~) for gauge 
C, in the absolute mode at (P, - Pz) = 102 600 Pa. 
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8. Summary and conclusions 
In the present work, the apparent dependence of the effective 
area of pistons in gas-piston gauges, operated in the absolute 
mode, on gas species, was investigated. A model was adopted in 
which the area of interest is the mean area of the piston. 
Pressure differences, AP values, are introduced to account for 
the major part of the gas-species dependence. The major part of 
the AP is attributed to the pressure drop or loss due to the 
kinetic energy required to establish the velocity profile in the 
annular space between the piston and cylinder. The pressure 
drop is shown to depend on the pressure difference across the 
gauge, ( P I  - P z ) ,  the fall rate of the piston, FR,  the density of the 
gas, p, and the viscosity of the gas, p. For the individual gauge, a 
pressure drop is shown to be a function of ( P I  - P J ( F R ~ / ~ ) .  
For two gauges in a cross-float configuration the net kinetic- 
energy-related pressure drop, DP, is equal to the difference 
between the pressure drop for the gauge being calibrated and 
the pressure drop for the reference gauge. 

Values of DP (or AP,) are determined experimentally, for 
helium, neon, argon, nitrogen and krypton, and fitted against 
( P I  - P z ) ( ~ ~ p / p ) .  Calculated values of DP from the fitted 
equation are used to calculate A,(23), the area of the piston in 
gauge C1, at the reference temperature, 23 "C. 

The calculated values of A,-(23) are very precise, with a 
relative estimate of standard deviation of 1.2 parts per million 
of area or less. 

It should be emphasised that the piston areas calculated in 
this work are the real physical areas of the pistons, not the 
effective areas. Also, the magnitude of the effect of gas species 
found for the C gauges in this work could be smaller, as 
illustrated for the reference gauge in figure 3, or larger for other 
piston gauges. The effect was sufficiently large for the C gauges 
that the detailed analysis and decomposition of the effect could 
be made very effectively. 
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