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The development of stabilized multifrequency lasers makes fractional fringes an increasingly attractive
technique for length measurement. Determination of an unknown length from the measured fractional
fringes is aided by the development of analytical equations for the length and its uncertainty, and criteria
are given for selecting the wavelengths.

Introduction

The technique of fractional fringes or exact fractions
has been used for a variety of length measuring tasks
since Benoit' applied it to the determination of the
meter. However, the use of fractional fringes with op-
tical interferometry has been restricted by the limited
availability of well known and appropriately spaced
wavelengths. The development of frequency stabilized
ir lasers with a large number of well characterized
wavelengths2 3 and the possibility of frequency stabi-
lized dye lasers should broaden the use of fractional
fringes. In this paper we develop a set of analytical
equations, amenable to automatic computation, that
permit the length to be calculated as a series of succes-
sive approximations in terms of the wavelengths and the
measured fractional fringes. Included are criteria for
selecting the wavelengths, expressions for the uncer-
tainty of the calculated value at each stage of the com-
putation, and expressions for the length range over
which the calculation will be valid.

The determination of an unknown length from frac-
tional fringes works as follows. A set of measured
fractional fringes is obtained by measuring the unknown
length interferometrically with two or more wave-
lengths. Only one discrete set of equally spaced lengths
will satisfy that set of measured fractional fringes. This
is illustrated in Fig. 1 for two wavelengths X2 = 0.8X1,
with measured fractional fringes fi = 0.4 and f2 = 0.5.
These fractional fringe values occur simultaneously in
the figure at lengths marked A,B,C that are spaced
apart by a repeat distance 4X1, or 5X2. The measured
length could be any one of those or the infinite number

of other lengths for which this combination of fi and f2
will occur. However, if an initial estimate of the length
L' is available with an uncertainty +AL, the true length
L must be between L'-AL and L' + AL. If AL is less
than half of the repeat distance only one of the points
for which fi = 0.4 and f2 = 0.5 will be between L' - AL
and L' + AL. In this case it is point B and L = L'-
1.8X 1 .

Basic Equations

In the following derivation an initial estimate of the
length will be corrected to obtain a value of the mea-
sured length with a smaller uncertainty than the initial
estimate. This process may have to be repeated to
obtain the final desired uncertainty. The initial esti-
mate is assumed available using some other measure-
ment technique, e.g., a micrometer or meter stick, al-
though, as will be discussed, in some cases even an initial
estimate of the length is not required. The correction
term will depend on the initial estimate of the length
and the measured fractional fringes for two or more
wavelengths. It will be expressed in terms of a synthetic
or effective wavelength, obtained by taking combina-
tions of the individual wavelengths. The calculation
will be possible only if a synthetic wavelength can be
obtained that is longer than the total uncertainty in the
measured length.

Given a set of wavelengths Xi, i = 1,2,. . ., we can de-
fine a set of corresponding wavenumbers hi = I/X. We
can then write, for a length L,

L = (Ni + fi)Xj

or

Lki = Ni + fi,
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(1)

where Ni are the integral numbers of fringes, and the
fractional fringes fi satisfy 0 < fi < 1. If we have an
estimate L' of the length we can use it to determine a set
of Gi and ei from the equations
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Fig. 1. Illustration of the use of fractional fringes fi and f2 to de-
termine a length L. The values of fl, f2, and the estimated length L'

can be used to calculate an improved value for L.

Equation (4) and the condition imposed by Eq. (5) are
all that are needed to determine L, but they can be
simplified for computational purposes by noting that
for the numerical value of I + lAi (fi - es) which satis-
fies Eq. (5),

I + ZA (i - e) = F[-A (i-e)] (5a)

or

= F[2;Ai(fi - ei)] -1, (5b)

where F[ZAi(fi - ei)] is the positive fractional part of
A(fi - ei) and 0 < F[lAi(fi - es)] < 1. If 0 <

F[2JAi (fi - es)] < Y2 Eq. (5a) is used, if 1/2 < FZAi (fi -
ei)I < 1, Eq. (5b) is used. Similarly, the value of
F[2Ai (fi - es)] can be written as

F[XAifi- ei)] = F(2Aifi) - F(lAiej)

or

L'ki = Gi + e, (2)

where Gi is the integral part of L'k1 , and es is the posi-
tive fractional part. If we can determine the difference
between the true and estimated length, L = L - L', it
can be used to correct the initial estimate of the length.
5L can be obtained by subtracting Eq. (2) from Eq.
(1),

Lki = Ni - Gi + i-ej. (3)

We can form linear combinations of the above equa-
tions,

IAi bLk = S2Aj(N - G + f -e),

where all sums are over i, and the Ai are zero, positive,
or negative integers. Criteria for selecting the Ai will
be developed later. Then,

A i= (Ni - Gi) + 2;Aj(f - e)

= F(2Ajf) - F(2Ajej) + 1.
Equation (4) can then be rewritten as

6L = [I' + F(fAifi) - F(Ae)jX,.

Equation (5) requires the term in brackets to be be-
tween -1/2 and +'/2 which will be the case only for I' =
-1, 0, or 1.

The above expression for 5L can be further simplified
by taking linear combinations of Eq. (2),

2Aiei = 2AiL'ki - 5AjG.

Since E2AiGi is an integer

F(2;Aiei) = F(L'ZAiki)

= F(L'/X).

Equation (4) can then be finally rewritten as

6L = [' + F(YAifi)-F(L'/N)]X,, (6)

where I' = -1,0, or 1. The unique solution is the value
of ' for which

-l < I' + F(ZAifi) - F(L'/Xs) < 1½.

Since Ai, Ni, and Gi are all integers, Ai(Ni - Gi) = I,
where I is some unknown integer. Therefore,

6LI + 2Ai(f- ei) = [I + Ai(fi - ei)]x,, (4)

where /0Aiki = is the synthetic or effective wave-
length for the beat frequency obtained by adding mul-
tiples of the different frequencies corresponding to the
wavelengths Xi. We can obtain a unique solution from
Eq. (4) if we can determine what the value of I should
be. This can be done if we select the Ai so that L lies
within a range spanned by this synthetic wavelength,
i.e.,-/ 2)A, <ebL < Y2X,. If we know the uncertainty AL
in our initial estimate of the length and are able to select
the Ai such that the synthetic wavelength is long enough
so that the above condition applies, the correct solution
from Eq. (4) is that value of I for which

-l/2 < I + 2;Aj (fi - e < k. (5)

Only one value of 1 will satisfy this condition, and the
solution will be unique.

(7)

If the available wavelengths A = /k can be com-
bined to form a synthetic wavelength X = 1/2Aiki that
spans the possible range of L, Eq. (6) can be used to
obtain a corrected value of the length L = L' + L.
However, as discussed in the next section, the i and ki
are measured values, and their experimental uncer-
tainties will introduce an uncertainty into the corrected
length so that further corrections may be required. The
experimental uncertainties also will further restrict the
applicability of our solution.

Effects of Experimental Uncertainties

In general, if the ki are corrected for the index of re-
fraction of the medium they will be well known, and we
will not explicitly discuss the effect of their uncertain-
ties. It should be noted, however, that they could be-
come important if a very long synthetic wavelength is
generated so that Aiki becomes small enough to be
comparable to the uncertainty in one of the ki.
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The uncertainties in the fi will typically be 0.01 al-
though they can easily be an order of magnitude smaller
or larger depending on the particular experiment. We
have

L = L' + L.

Since 3L depends on L' and the fi, the uncertainty dL
in the derived length will be, neglecting errors in the
hi,

dL =-dL' + -dL1'+ -dfi,
OL' aL'

where dL' and dfi are the uncertainties in L' and the fi.
Now, taking linear combinations of Eqs. (1) and (2) we
can write

5L = [YA (Ni + fi) - 2Aj(Gi + ei)]X8

= [2AiNi + fAifi - L'AikiIX,

4 - 2AL- >

iL L'

Lc L c
Xs

; yxs.;

Length - *

Fig. 2. Illustration of possible error of one synthetic wavelength due
to uncertainty in the measured fringes. This error can be avoided
by restricting the usable portion of the synthetic wavelength to

(1 - 2y)Xs.

so

(a5L)/(aL') = -(Ajk)X =-1

and

(O9L)/(afi) = AiX,.

Hence,

dL = dL' - dL' + (Ajdfi)X,

= (Ajdfi)X,.

This demonstrates that the solution is self-correcting,
i.e., the initial error in L' does not propagate through the
solution but is canceled out, and the uncertainty of the
corrected value of the length depends only on the
uncertainties in the fi. If all the fi have the same un-
certainty, is, the corrected length will be uncertain by

Xs f I IAi I = aXy, where y = z 1Ai I E.
Not only will the uncertainties in the fi determine the

uncertainty in the corrected length, but they will further
restrict the range over which Eq. (6) has a unique solu-
tion. Figure 2 shows schematically a length L' with the
brackets indicating the uncertainty in that value of L'.
The true length L, which can be anywhere between the
brackets, is indicated as being near one extreme. A
synthetic wavelength somewhat longer than the un-
certainty in L' is shown below. Neglecting errors, that
synthetic wavelength could be used to obtain a corrected
length. However, as shown, the corrected length will
have a possible error of LXsy. If the true length is
within Xsy of either end of the synthetic wavelength in
Fig. 2 the corrected length could appear to be beyond
the end, as indicated by L,. However, the calculated
value will then be displaced by one synthetic wavelength
to Lj' on Fig. 2. To avoid this error the uncertainty in
L' must be less than the synthetic wavelength minus the
uncertainty in the corrected value. That is, we can
obtain a corrected length for a given set of Ai if

-(1 - 2 y)< < (1 - 2y)X,

2 2
(8)

Obviously no solution can be obtained if y y2. We will
call ± [(1 - 2'y) X]/2 the useful range of a given synthetic
wavelength.

Use of the Equations

The general procedure is to select, if possible, a
combination of wavenumbers such that the useful range
of the synthetic wavelength spans the uncertainty in the
initial determination of length, and Eq. (8) is satisfied.
A corrected length is calculated using Eq. (6) with a
resultant uncertainty of ±-yX,. A new combination of
wavenumbers, fAi'ki, is picked with a shorter synthetic
wavelength such that

elAjj < 1-2E2jAi'
I EAiki I I fAilki I

and Eq. (6) is again applied to obtain a second correction
to the length. This process is repeated using progres-
sively shorter synthetic wavelengths until the uncer-
tainty is less than a fringe of one of the Xi. The cor-
rected length will then have an error determined by only
one of the measured partial fringes, i.e., the integral
number of fringes or order number is known exactly.

It should be noted that this technique can be used
without an initial estimate of the length if a synthetic
wavelength long enough to span the desired measure-
ment range can be generated. In this case L' = 0 can
be used in Eq. (6), and 6L is the first approximation to
the length. It is also worth noting that if L is known to
be positive and sufficiently far from zero so that ex-
perimental uncertainties cannot make it appear nega-
tive, the range of the approximation can be doubled.
This is also true if L is known to be negative and suffi-
ciently removed from zero. In these two cases Eq. (8)
is modified to

7X, < L < (I1--y)X, (L > 0)

or

-(1 -,)X < L < -- yX (L < 0),

and a unique solution can be obtained from

L = F(1Ajfj)X, (L > 0)

or

L = [F(2Aifi) - i]X (L < 0).

Selection of the proper combination of wavenumbers
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to generate the desired synthetic wavelengths can
present a problem. If wavelengths can be selected at
will, as could be the case with microwave or acoustical
interferometers, arbitrarily long effective wavelengths
can be generated by taking simple differences between
pairs of wavelengths, although at some point uncer-
tainties in the measured relative values of the wave-
lengths will start to contribute errors. If a limited
number of fixed wavelengths are available, there will be
a limit to the range of synthetic wavelengths for which
Eq. (8) can be satisfied, and the choice of integral
coefficients Ai to obtain the desired synthetic wave-
lengths may involve some guessing and trying. Once
a set of synthetic wavelengths are generated, they can
be used to determine any length for which Eq. (8) is
satisfied.

In the preceding derivations it has been assumed that
the experimental uncertainties are known. They can
of course only be estimated. Since an error of one or
more synthetic wavelengths will occur in the corrected
length if the conditions of Eq. (8) are not met, it is wise
to be conservative in estimating experimental uncer-
tainties and check the final corrected length if possible.
The latter could be done by comparing a final calculated
partial fringe with the measured fringes for all wave-
lengths.

Example

Development of the computational technique de-
scribed in this paper was initiated by the use of pulsed
ultrasonic 4 and CO2 laser interferometers 5 for the ac-
curate determinations of liquid column heights in ma-
nometry. Both of these systems used cumulative fringe
counting which has to proceed very slowly when mer-
cury is used because of ripples on the moving mercury
surface. The fractional fringe technique is obviously
well suited for use with the ultrasonic interferometer
since it is a relatively simple matter to use the inter-
ferometer with several frequencies. These can be
chosen at will so that simple difference, between
wavenumbers will give any desired synthetic wave-
length. The CO2 laser interferometer can also be used
with this technique. Although the wavelength cannot
be arbitrarily set, the CO2 laser will generate a large
number of regularly but not quite evenly spaced wave-
lengths in two bands centered near 9.4 gm and 10.4 gAm.

About seventy or eighty of these wavelengths can be
obtained with a reproducibility of parts in 1010 from a
stabilized laser. These wavelengths have been mea-
sured with a relative uncertainty of less than 3 parts in
101l and an absolute uncertainty of about 4 parts in 109.6

Thus a stabilized CO2 laser is an excellent length stan-
dard, and the spacing of wavelengths permits the gen-
eration of a wide range of synthetic wavelengths.

An attempt has not been made to determine the
largest usable synthetic wavelength obtainable using
a CO2 laser, but the following examples illustrate the
possibilities. Taking differences between the R(24),
R(26), R(28), and R(30) lines in the 9.4-Am band gives

a synthetic wavelength of 103 m. The small uncer-
tainties in the measured differences between the indi-
vidual wavelengths result in an uncertainty in this
synthetic wavelength of about 0.4%. However, it is not
apparent that an object of this length would be stable
to a part in 109 long enough to measure the fractional
fringes with a precision of 0.01.

More realistically, differences between the R(24),
R(26), and R(28) lines give a synthetic wavelength of
380.65 mm. Two more lines spaced further apart would
be required to generate a series of synthetic wavelengths
such that the uncertainty in the measured length is re-
duced below one fringe (assuming an uncertainty of
±0.01 in the measured fractional fringes). If a shorter
range is required fewer wavelengths are needed. For
example, assume the following three wavelengths in the
9.4-pm band are used:

X = R(28) = 9.22953010 gm;

A2= R(24) = 9.24994570 im;

X3 = P(32) = 9.65741651 Azm.

Then, assuming an uncertainty in the measured fringes
of ±0.01, the following Ai will generate a set of synthetic
wavelengths that can be used to reduce the uncertainty
in the length below one fringe.

A, = 1,A 2 = -1, A3 = 0 XA1 = 4.1817 mm;

Al = 1, A2 = 0, A3 = -1 Xs2 = 0.2083109 m;

Al = -1, A2 = 0, A 3 = 2 Xs3 = 0.0101269060 mm.

It should be noted that while shorter synthetic
wavelengths can be generated by multiplying all the Ai
by a common integer nothing is gained since the relative
error is correspondingly increased, and the absolute
error remains constant. As an example, if Ai' = 2Ai,
then X,' = 1/2Xs. But we will have oy' = 2 y so 'X, =

This paper benefited greatly from discussions with
William Angel, Peter Heydemann, and Richard Hy-
land.
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